色播影院

色播影院

 AV视频 我们 指导服务 服务报价

                   

经济毕业论文 | 管理毕业论文 | 法律毕业论文 | 英语毕业论文 | 医学毕业论文 | 教育毕业论文 | 金融毕业论文 | 政治毕业论文 | 机械通讯类设计 | 文学毕业论文 | 计算机类设计 | 会计毕业论文 | 平面艺术论文 | 哲学毕业论文 | 物流毕业论文 | 硕士毕业论文 | 新论文网范文 | 写毕业论文价格 |  

搜索 

论文范文 硕士论文 英语毕业论文 会计毕业论文 计算机毕业设计 机械工程设计论文

      本站公告
新论文网经客户反馈,最近有仿站冒充我们新论文网的信誉骗人,请大家谨记我们唯一官方网址:http://msyh516.cn,新论文网是工信部备案的正规网站, 很荣幸您能光临本站,如果您是朋友介绍,请帮我们感谢您朋友,如果通过其他方式找上我们那更是缘分,新论文网依托强大的写手资源,本着诚心合作的宗旨,专门为您排解写作难题!

旺旺客服
毕业设计
毕业论文
硕士论文

      网站简介
新论文网是一家专业从事毕业论文、毕业设计、硕士论文、论文指导的资讯网站。本站现拥有一支稳定高端的论文指导队伍,50余位专兼职博硕士以上专业人员组成。我们提供的资料可能涉及到能否晋升或者毕业,乃人生之大事,我们绝不敢怠慢,“把客户的事情当作自己的事情”是烙在新论文网每个员工心中的做事原则,也是做人之本。
      毕业设计导航
      网站信誉
      高校联盟
四川大学   成都电子科大
成都大学   科大成都学院
西南交大   成都理工大学
西南财大   四川师范大学



当前位置:网站美女AV > 英语毕业论文 > 其他相关论文 > XKA5750数控立式铣床升降台的结构设计外文翻译及原文

XKA5750数控立式铣床升降台的结构设计外文翻译及原文

    作者:新论文网    [ 2013-10-29 15:45:49 ]

 【字体: (右键暂停)    

车床及其结构
 车床是主要用于生成旋转表面和平整边缘的机床。根据它们的使用目的、结构、能同时被安装刀具的数量和自动化的程度,车床—或更确切地说是车床类的机床,可以被分成以下几类:
 (1)普通车床
 (2)万能车床
 (3)转塔车床
 (4)立式车床
 (5)自动车床
 (6)特殊车床
 虽然车床类的机床多种多样,但它们在结构和操作原理上具有共同特性。这些特性可以通过普通车床这一最常用的代表性类型来最好地说明。下面是自拍AV视频 图11.1所示普通车床的主要部分的描述。
 车床床身:车床床身是包含了在两个垂直支柱上水平横梁的主骨架。为减振它一般由灰铸铁或球墨铸铁铸造而成。它上面有能让大拖板轻易纵向滑动的导轨。车床床身的高度应适当以让技师容易而舒适地工作。
 主轴箱:主轴箱固定在车床床身的左侧,它包括轴线平行于导轨的主轴。主轴通过装在主轴箱内的齿轮箱驱动。齿轮箱的功能是给主轴提供若干不同的速度(通常是6到18速)。有些现代车床具有采用摩擦、电力或液压驱动的无级调速主轴箱。
  主轴往往是中空的,即纵向有一通孔。如果采取连续生产,棒料能通过此孔进给。同时,此孔为锥形表面可以安装普通车床顶尖。主轴外表面是螺纹可以安装卡盘、花盘或类似的装置。
 尾架:尾架总成基本包括三部分,底座、尾架体和套筒轴。底座是能在车床床身上沿导轨滑动的铸件,它有一定位装置能让整个尾架根据工件长度锁定在任何需要位置。尾架体为一能横向运动的铸件,它可以调整尾架轴线与主轴箱轴线成一直线。第三部分,套筒轴是一淬硬钢管,它能根据需要在尾架体中纵向进出移动。这通过使用手轮和螺杆来达到,与螺杆啮合的是一固接在套筒轴上的螺母。套筒轴开口端的孔是锥形的,能安装车床顶尖或诸如麻花钻和镗杆之类的工具。套筒轴通过定位装置能沿着它的移动路径被锁定在任何点。
 大拖板:大拖板的主要功能是安装刀具和产生纵向和/或横向进给。它实际上是一由车床床身V形导轨引导的、能在车床床身主轴箱和尾架之间滑动的H形滑块。大拖板能手动或者通过溜板箱和光杆(进给杆)或丝杆(引导螺杆)机动。在切削螺旋时,动力通过丝杆提供给溜板箱上的齿轮箱。在其余车削作业中,都由光杆驱动大拖板。丝杆穿过一对固定在溜板箱后部的剖分螺母。
 当开动特定操作杆时,剖分螺母夹在一起作为单个螺母与旋转的丝杆啮合,并带动拖板沿着床身提供进给。当操作杆脱离时,剖分螺母释放同时大拖板停止运动。另一方面,当使用光杆时则通过蜗轮给溜板箱提供动力。 蜗轮用键连接在光杆上,并与溜板箱一起沿光杆运动,光杆全长范围开有键槽。现代车床一般在主轴箱下装备快速变换齿轮箱,通过一系列齿轮由主轴驱动。它与光杆和丝杆连接,能容易并快速地通过简单转换适当的操作杆选择各种进给。快速变换齿轮箱可用于普通车削、端面切削和螺旋切削作业中。由于这种齿轮箱与主轴相连,主轴每转一圈溜板箱(和切削刀具)运动的距离能被控制,这距离就可以被认为是进给。
 车床切削刀具
 车床刀具的形状和几何参数取决于它们的使用目的。车削刀具可以分为两个主要组别,即外部切削刀具和内部切削刀具。这两组中的每一组都包括以下类型刀具:
 车削刀具:车削刀具可以是精车刀具或粗车刀具。粗车刀具刀尖半径较小,用于深切削。而精车刀具刀尖半径较大,用于通过微量进刀深度来获得具有较好表面光洁度的最终所需尺寸。粗车刀具按其进给方向可以是右手型的或是左手型的。它们可以有直的、弯的或偏置的刀杆
 端面刀具:端面刀具用在端面作业中加工平板侧面或端部表面,也有加工左右侧表面之分。与一般采用纵向进给的车削作业相反,那些侧表面通过采用横向进给产生。
 切断刀具:切断刀具,有时也称为分割刀具,用于将工件分割成若干部分和/或加工外部环形槽。
 螺纹切削刀具:螺纹切削刀具根据所需螺纹的横截面,有三角形的、矩形的或梯形的切削刃。同时,这些刀具的平面角必须始终与螺纹形状的平面角保持一致。车外螺纹的螺纹切削刀具为直刀杆,而车内螺纹的螺纹切削刀具则是弯刀杆。
 成形刀具:成形刀具有专门制成特定形状的刀刃,这种刀刃形状与被加工工件所需外形正好相反。高速钢刀具通常以单件形式制造,而硬质合金或陶瓷刀具则以刀尖形式制造。后者用铜焊或机械方法固定于钢质刀杆上。图11.2所示为机械式固定布置方式,它包括了硬质合金刀尖、断屑槽、衬垫、卡装螺杆(带有垫圈和螺母)及刀杆。顾名思义,断屑槽的功能就是不时地折断长切屑,以防形成很长的可能会在机加工操作中引起问题的缠绕切屑条。硬质合金刀尖(或陶瓷刀尖)根据采用它们的机加工操作,可以有不同的形状。根据将刀尖装配在刀杆上是通过用铜焊还是机械卡装,刀尖可以是实心的或是带有中心通孔的。
 车床操作
 在下面这节中,要讨论的是能在传统普通车床上进行的各种机加工作业。然而,必须记住现代计算机数控车床具有更多的功能并且可以进行其它操作,例如仿型。下面是传统车床的操作。所以,由此产生的机加工痕迹是一条具有很小节距的螺旋线,该节距等于进给。因此机加工表面始终是圆柱形的。
 圆柱面车削:圆柱面车削是所有车床操作中最简单也是最普通的。工件旋转一整圈产生一个圆心落在车床主轴上的圆;由于刀具的轴向进给运动这种动作重复许多次。
 轴向进给通过大拖板或复式刀架手动或自动提供,然而切削深度则由横向滑板控制。粗车中,推荐使用较大切削深度(根据工件材料可达0.25英寸或6毫米)和较小进给。另一方面,精车则最好采用很小的进给、较小的切削深度(小于0.05英寸或0.4毫米)和较高的切削速度。
 端面车削:端面车削操作的结果是将工件整个端部表面或者像轴肩之类的中间环形表面加工平整。在端面车削操作中,进给由横向滑板提供,而切削深度则通过大拖板或复式刀架控制。端面车削既可以从外表面向内切削也可以从工件中心往外切削。很明显在这两种情况下机加工痕迹都是螺线形式。通常在端面车削作业时习惯于采用夹住大拖板,这是因为切削力倾向于将刀具(当然包括整个大拖板)推离工件。在大多数端面车削作业中,工件被支撑在卡盘或花盘上。
 开槽:在切断和开槽操作中,刀具只有横向进给。要采用前面已经讨论过的切断和开槽刀具。
 镗孔和内部车削:镗孔和内部车削通过镗杆或合适的内部切削刀具在内表面进行。如果初始工件是实心的,则必须首先进行钻孔作业。钻孔刀具安装在尾架上,然后对着工件进给。
 锥面车削:锥面车削通过沿着与车床主轴不平行而倾斜成一个等于锥面所需角度的方向进刀来实现。下面是在实际锥面车削中采用的不同方法:
 (1) 将复式刀架盘旋转一个等于圆锥体顶角一半的角度。通过摇动复式刀架操纵柄手动提供进给。当锥角相对较大时切削外锥面和内锥面推荐使用这种方法。
 (2) 对很短的外锥面采用特殊的成型刀具。工件的宽度必须略小于刀具的宽度,并且工件通常由卡盘支撑或夹紧在花盘上。在这种情况下,机加工作业时只有横向进给而大拖板则夹紧在床身上。
 (3)偏移尾架顶尖。对需要较小锥角(小于8°) 的较长工件外锥面车削采用这种方法。工件安装于两顶尖之间;然后将尾架顶尖朝垂直于车床主轴方向移动一距离S。
 (4) 采用锥面车削附加装置。这种方法用于车削很长的工件,其长度大于复式刀架的整个行程。在这种场合下要遵循的步骤是将横向滑板完全脱离大拖板,然后通过锥面车削附加装置进行引导。
 在此作业中,能照常使用自动轴向进给。对具有较小锥角(即8°到10°)的很长工件推荐采用这种方法。
 螺纹切削:在螺纹切削作业时,轴向进给必须保持恒定速率,这取决于工件的转速(rpm)。两者之间的关系基本上由被切削螺纹所需的节距决定。
 如前所述,当依靠驱动大拖板的丝杆切削螺纹时轴向进给是自动产生的。丝杆旋转一圈,大拖板就行进等于丝杆节距的一段距离。因此如果丝杆的旋转速度等于心轴的转速(即工件的转速),生成切削螺纹的节距就正好等于丝杆的节距。所以被切削生成螺纹的节距总是取决于丝杆和心轴的转速比:
 丝杆的节距/工件所需节距=工件转速/丝杆转速=心轴到大拖板的传动比。
 这公式在决定车床心轴和丝杆之间的运动学关系时很有用,并且提供了正确挑选它们之间轮系的方法.
 在螺纹切削作业中,工件既能支撑于卡盘中,对相对较长的工件也能安装在两个车床顶尖之间。使用的刀具外形必须正好与要切削螺纹的轮廓一致,即三角形刀具必须用于三角形螺纹等等。
 滚花:滚花主要是一种不产生切屑的成型操作。它使用两个带有粗锉式表面的淬火滚轮压在旋转的工件上使工件金属产生塑性变形。
 滚花用于生成粗糙的圆柱(或圆锥)面,通常用来作手柄。有时表面滚花只为装饰之故;有不同的滚花图案类型可供选择。
 切削速度和进给
 切削速度,通常用每分钟表面英尺给出,就是一分钟内工件(被切削)表面给定点在圆周方向上行进的英尺数。表面速度与转速之间的关系可以用下式给出:    
                        SFM=πDN
 式中
 D=用英尺表示的工件直径
 N=转速
 表面切削速度主要由被切削材料和切削刀具材料决定,可以从手册、切削刀具生产商提供的资料及类似的东西上查取。 一般而言,SFM当机加工冷轧或低碳钢时取100,机加工较坚韧的金属时取50,而机加工较软材料时取200。对铝而言,SFM通常可取400以上。也还存在其它一些变量影响表面切削速度的最佳值。 其中包括刀具形状、润滑剂或冷却液的类型、进给和切削深度。切削速度一旦确定,心轴转速(rpm)就能按下式得到:
 N=
        合适进给的选择取决于许多因素,例如所需表面光洁度、切削深度和所用刀具的几何形状。进给越小生成的光洁度越好,而在刀具与工件直接接触时进给越大则可以减少机加工时间。 所以对粗车一般推荐使用较大进给,而精车则用较小进给。再者,作为指导方针的进给推荐值可以从手册和切削刀具生产商提供的资料小册子上找到。

图11、1
The Lathe and Its Construction
 A lathe is a machine tool used primarily for producing surfaces of revolution
 and flat edges. Based on their purpose, construction, number of tools that can simultaneously be mounted, and degree of automation, lathes-or, more accurately, lathe-type machine tools can be classified as follows:
 (1)Engine lathes
 (2)Toolroom lathes
 (3)Turret lathes
 (4)Vertical turning and boring mills
 (5)Automatic lathes
 (6)Special-purpose lathes
 In spite of that diversity of lathe-type machine tools, they all have common features with respect to construction and principle of operation. These features can best be illustrated by considering the commonly used representative type, the engine lathe. Following is a description of each of the main elements of an engine lathe, which is shown in Fig.11.1.
 Lathe bed. The lathe bed is the main frame, involving a horizontal beam on two vertical supports. It is usually made of grey or nodular cast iron to damp vibrations and is made by casting. It has guideways to allow the carriage to slide easily lengthwise. The height of the lathe bed should be appropriate to enable the technician to do his or her job easily and comfortably.
 Headstock. The headstock is fixed at the left hand side of the lathe bed and includes the spindle whose axis is parallel to the guideways (the slide surface of the bed). The spindle is driven through the gearbox, which is housed within the headstock. The function of the gearbox is to provide a number of different spindle speeds (usually 6 up to 18 speeds). Some modern lathes have headstocks with infinitely variable spindle speeds, which employ frictional ,electrical ,or hydraulic drives.
 The spindle is always hollow, i. e., it has a through hole extending lengthwise. Bar stocks can be fed through that hole if continuous production is adopted. Also, that hole has a tapered surface to allow mounting a plain lathe center. The outer surface of the spindle is threaded to allow mounting of a chuck, a face plate, or the like.
 Tailstock. The tailstock assembly consists basically of three parts, its lower base, an intermediate part, and the quill. The lower base is a casting that can slide on the lathe bed along the guideways, and it has a clamping device to enable locking the entire tailstock at any desired location, depending upon the length of the workpiece. The intermediate part is a casting that can be moved transversely to enable alignment of the axis of the tailstock with that of the headstock. The third part, the quill, is a hardened steel tube, which can be moved longitudinally in and out of the intermediate part as required. This is achieved through the use of a handwheel and a screw, around which a nut fixed to the quill is engaged. The hole in the open side of the quill is tapered to enable mounting of lathe centers or other tools like twist drills or boring bars. The quill can be locked at any point along its travel path by means of a clamping device.
 The carriage. The main function of the carriage is mounting of the cutting tools and generating longitudinal and/or cross feeds. It is actually an H-shaped block that slides on the lathe bed between the headstock and tailstock while being guided by the V-shaped guideways  of the bed. The carriage can be moved either manually or mechanically by means of the apron and either the feed rod or the lead screw.
 When cutting screw threads, power is provided to the gearbox of the apron by the lead screw. In all other turning operations, it is the feed rod that drives the carriage. The lead screw goes through a pair of half nuts, which are fixed to the rear of the apron. When actuating a certain lever, the half nuts are clamped together and engage with the rotating lead screw as a single nut, which is fed, together with the carriage, along the bed. When the lever is disengaged, the half nuts are released and the carriage stops. On the other hand, when the feed rod is used, it supplies power to the apron through a worm gear. The latter is keyed to the feed rod and travels with the apron along the feed rod, which has a keyway extending to cover its whole length. A modern lathe usually has a quick-change gearbox located under the headstock and driven from the spindle through a train of gears. It is connected to both the feed rod and the lead screw and enables selecting a variety of feeds easily and rapidly by simply shifting the appropriate levers. The quick-change gearbox is employed in plain turning, facing and thread cutting operations. Since that gearbox is linked to the spindle, the distance that the apron (and the cutting tool) travels for each revolution of the spindle can be controlled and is referred to as the feed.
 Lathe Cutting Tools
 The shape and geometry of the lathe tools depend upon the purpose for which they are employed. Turning tools can be classified into two main groups, namely, external cutting tools and internal cutting tools.  Each of these two groups include the following types of tools:
 Turning tools. Turning tools can be either finishing or rough turning tools. Rough turning tools have small nose radii and are employed when deep cuts are made. On the other hand, finishing tools have larger nose radii and are used for obtaining the final required dimensions with good surface finish by making slight depths of cut. Rough turning tools can be right-hand or left-hand types, depending upon the direction of feed. They can have straight, bent, or offset shanks.
  Facing  tools. Facing tools are employed in facing operations for machining plane side or end surfaces.  There are tools for machining left-hand-side surfaces and tools for right-hand-side surfaces. Those side surfaces are generated through the use of the cross feed, contrary to turning operations, where the usual longitudinal feed is used.
 Cutoff tools. Cutoff tools, which are sometimes called parting tools, serve to separate the workpiece into parts and/or machine external annular grooves.
 Thread-cutting tools. Thread-cutting tools have either triangular, square, or trapezoidal cutting edges, depending upon the cross section of the desired thread. Also, the plane angles of these tools must always be identical to those of the thread forms. Thread-cutting tools have straight shanks for external thread cutting and are of the bent-shank type when cutting internal threads.
 Form tools. Form tools have edges especially manufactured to take a certain form, which is opposite to the desired shape of the machined workpiece. An HSS tool is usually made in the form of a single piece, contrary to cemented carbides or ceramic, which are made in the form of tips. The latter are brazed or mechanically fastened to steel shanks.Fig.11.2 indicates an arrangement of this latter type, which includes the carbide tip, the chip breaker, the pad, the clamping screw (with a washer and a nut), and the shank.As the name suggests, the function of the chip breaker is to break long chips every now and then, thus preventing the formation of very long twisted ribbons that may cause problems during the machining operation. The carbide tips (or ceramic tips) can have different shapes, depending upon the machining operations for which they are to be employed. The tips can either be solid or with a central through hole, depending on whether brazing or mechanical clamping is employed for mounting the tip on the shank.
 Lathe Operations
 In the following section, we discuss the various machining operations that can be performed on a conventional engine lathe. It must be borne in mind, however, that modern computerized numerically controlled lathes have more capabilities and can do other operations, such as contouring, for example. Following are conventional lathe operations.
 Cylindrical turning. Cylindrical turning is the simplest and the most common of all lathe operations. A single full turn of the workpiece generates a circle whose center falls on the lathe axis; this motion is then reproduced numerous times as a result of the axial feed motion of the tool. The resulting machining marks are, therefore, a helix having a very small pitch, which is equal to the feed. Consequently, the machined surface is always cylindrical.
  The axial feed is provided by the carriage or the compound rest, either manually or automatically, whereas the depth of cut is controlled by the cross slide. In roughing cuts, it is recommended that large depths of cuts (up to 0.25in. or 6mm, depending upon the workpiece material) and smaller feeds would be used. On the other hand, very fine feeds, smaller depths of cut (less than 0.05in, or 0.4mm), and high cutting speeds are preferred for finishing cuts.
  Facing. The result of a facing operation is a flat surface that is either the whole end surface of the workpiece or an annular intermediate surface like a shoulder. During a facing operation, feed is provided by the cross slide, whereas the depth of cut is controlled by the carriage or compound rest. Facing can be carried out either from the periphery inward or from the center of the workpiece outward. It is obvious that the machining marks in both cases take the form of a spiral. Usually, it is preferred to clamp the carriage during a facing operation, since the cutting force tends to push the tool (and, of course, the whole carriage) away from the workpiece. In most facing operations, the workpiece is held in a chuck or on a face plate.
 Groove cutting.In cut-off and groove-cutting operations, only cross feed of the tool is employed. The cut-off and grooving tools, which were previously discussed, are employed.
 Boring and internal turning. Boring and internal turning are performed on the internal surfaces by a boring bar or suitable internal cutting tools. If the initial workpiece is solid, a drilling operation must be performed first. The drilling tool is held in the tailstock, and the latter is then  fed against the workpiece.
 Taper turning. Taper turning is achieved by driving the tool in a direction that is not parallel to the lathe axis but inclined to it with an angle that is equal to the desired angle of the taper. Following are the different methods used in taper-turning practice:
 (1) Rotating the disc of the compound rest with an angle equal to half the apex angle of the cone. Feed is manually provided by cranking the handle of the compound rest. This method is recommended for taper turning of external and internal surfaces when the taper angle is relatively large.
 (2) Employing special form tools for external, very short, conical surfaces. The width of the workpiece must be slightly smaller than that of the tool, and the workpiece is usually held in a chuck or clamped on a face plate. In this case, only the cross feed is used during the machining process and the carriage is clamped to the machine bed.
 (3) Offsetting the tailstock center. This method is employed for external taper turning of long workpieces that are required to have small taper angles (less than 8°). The workpiece is mounted between the two centers; then the tailstock center is shifted a distance S in the direction normal to the lathe axis.
 (4) Using the taper-turning attachment. This method is used for turning very long workpieces, when the length is larger than the whole stroke of the compound rest. The procedure followed in such cases involves complete disengagement of the cross slide from the carriage, which is then guided by the taper-turning attachment.During this process, the automatic axial feed can be used as usual. This method is recommended for very long workpieces with a small cone angle, i.e., 8°through 10°.
 Thread cutting. When performing thread cutting, the axial feed must be kept at a constant rate, which is dependent upon the rotational speed (rpm) of the workpiece. The relationship between both is determined primarily by the desired pitch of the thread to be cut.
 As previously mentioned, the axial feed is automatically generated when cutting a thread by means of the lead screw, which drives the carriage. When the lead screw rotates a single revolution, the carriage travels a distance equal to the pitch of the lead screw.  Consequently, if the rotational speed of the lead screw is equal to that of the spindle (i.e., that of the workpiece), the pitch of the resulting cut thread is exactly equal to that of the lead screw. The pitch of the resulting thread being cut therefore always depends upon the ratio of the rotational speeds of the lead screw and the spindle: Pitch of the lead screw/ Desired pitch of workpiece=rpm of the workpiece/rpm of lead screw=spindle-to-carriage gearing ratio.
=
=spindle-to-carriage gearing ratio
 This equation is useful in determining the kinematic linkage between the lathe spindle and the lead screw and enables proper selection of the gear train between them.
 In thread cutting operations, the workpiece can either be held in the chuck or mounted between the two lathe centers for relatively long workpieces. The form of the tool used must exactly coincide with the profile of the thread to be cut, i.e., triangular tools must be used for triangular threads, and so on.
 Knurling. Knurling is mainly a forming operation in which no chips are produced. It involves pressing two hardened rolls with rough file like surfaces against the rotating workpiece to cause plastic deformation of the workpiece metal.
 Knurling is carried out to produce rough, cylindrical (or conical) surfaces, which are usually used as handles. Sometimes, surfaces are knurled just for the sake of decoration; there are different types of patterns of knurls from which to choose.
 Cutting Speeds and Feed
 The cutting speed, which is usually given in surface feet per minute (SFM), is the number of feet traveled in the circumferential direction by a given point on the surface (being cut) of the workpiece in 1 minute. The relationship between the surface speed and rpm can be given by the following equation:   
SFM=πDN
 Where D=the diameter of the workpiece in feet
N=the rpm
 The surface cutting speed is dependant primarily upon the material being machined as well as the material of the cutting tool and can be obtained from handbooks, information provided by cutting tool manufacturers, and the like. Generally, the SFM is taken as 100 when machining cold-rolled or mild steel, as 50 when machining tougher metals, and as 200 when machining softer materials. For aluminum, the SFM is usually taken as 400 or above. There are also other variables that affect the optimal value of the surface cutting speed. These include the tool geometry, the type of lubricant or coolant, the feed, and the depth of cut. As soon as the cutting speed is decided upon, the rotational speed (rpm)  of the spindle can be obtained as follows:
      N=SFM/(πD)
  The selection of a suitable feed depends upon many factors, such as the required surface finish, the depth of cut, and the geometry of the tool used. Finer feeds produce better surface finish, whereas higher feeds reduce the machining time during which the tool is in direct contact with the workpiece. Therefore, it is generally recommended to use high feeds for roughing operations and finer feeds for finishing operations. Again, recommended values for feeds, which can be taken as guidelines, are found in handbooks and in information booklets provided by cutting tool manufacturers.

Fig.11.1

以上只是该毕业设计(论文)的部分或者范文,需要购买该毕业设计(论文)更详细的资料请AV视频 本站客服
 返回主页  查看定制流程    继续搜索

复制地址 】【 收藏 】 【 打印 】 【 关闭


友情链接
新论文网

付款方式 | 网站介绍 | 免责声明 | AV视频 我们 | 网站导航 | 服务承诺 | 常见问题

AV视频 电话:800-800-800 电子邮件: QQ: 版权所有 新论文网 Copyright (C) 2006-2014

   声明:新论文网尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我 们,我们会及时删除!

新论文网-写毕业论文价格-写论文价格-写英语论文价格-写硕士论文价格-毕业设计论文价格-毕业论文设计价格

  • <tr id='il2zg'><strong id='il2zg'></strong><small id='il2zg'></small><button id='il2zg'></button><li id='il2zg'><noscript id='il2zg'><big id='il2zg'></big><dt id='il2zg'></dt></noscript></li></tr><ol id='il2zg'><option id='il2zg'><table id='il2zg'><blockquote id='il2zg'><tbody id='il2zg'></tbody></blockquote></table></option></ol><u id='il2zg'></u><kbd id='il2zg'><kbd id='il2zg'></kbd></kbd>

    <code id='il2zg'><strong id='il2zg'></strong></code>

    <fieldset id='il2zg'></fieldset>
          <span id='il2zg'></span>

              <ins id='il2zg'></ins>
              <acronym id='il2zg'><em id='il2zg'></em><td id='il2zg'><div id='il2zg'></div></td></acronym><address id='il2zg'><big id='il2zg'><big id='il2zg'></big><legend id='il2zg'></legend></big></address>

              <i id='il2zg'><div id='il2zg'><ins id='il2zg'></ins></div></i>
              <i id='il2zg'></i>
            1. <dl id='il2zg'></dl>
              1. 色播影院